Observations of Optical Secondary Eclipses of Transiting Hot Jupiters with the Gran Telescopio Canarias

Jayne Birkby
Leiden Observatory, The Netherlands (birkby@strw.leidenuniv.nl)
Ignas Snellen, Ernst de Mooij, Matteo Brogi, Bas Nefs (Leiden Observatory, The Netherlands)
Johannes Koppenhofer (University Observatory Munich, Germany)
Simon Albrecht (Massachusetts Institute of Technology, USA)
Ian Skillen (Isaac Newton Group, Spain)
Adam Burrows (Princeton University, USA)
Why Optical Secondary Eclipses?
Secondary eclipse depths directly measure the flux of the planet.
Why Optical Secondary Eclipses?

Secondary eclipse depths directly measure the flux of the planet.

The mean effective temperature of the planet day-side depends on:

- i) incident stellar radiation
Secondary eclipse depths directly measure the flux of the planet.

The mean effective temperature of the planet day-side depends on:

- i) incident stellar radiation
- ii) reflection by Rayleigh scattering or possible clouds
Secondary eclipse depths directly measure the flux of the planet.

The mean effective temperature of the planet day-side depends on:

- i) incident stellar radiation
- ii) reflection by Rayleigh scattering or possible clouds
- iii) fraction of energy transported to the night-side.
Secondary eclipse depths directly measure the flux of the planet.

The mean effective temperature of the planet day-side depends on:

- i) incident stellar radiation
- ii) reflection by Rayleigh scattering or possible clouds
- iii) fraction of energy transported to the night-side.

Measured thermal emission depends on:

- i) Planet P-T profile
Why Optical Secondary Eclipses?

Secondary eclipse depths directly measure the flux of the planet.

The mean effective temperature of the planet day-side depends on:

- i) incident stellar radiation
- ii) reflection by Rayleigh scattering or possible clouds
- iii) fraction of energy transported to the night-side.

Measured thermal emission depends on:

- i) Planet P-T profile
- ii) Pressure level at which stellar radiation is absorbed
Secondary eclipse depths directly measure the flux of the planet.

The mean effective temperature of the planet day-side depends on:

- i) incident stellar radiation
- ii) reflection by Rayleigh scattering or possible clouds
- iii) fraction of energy transported to the night-side.

Measured thermal emission depends on:

- i) Planet P-T profile
- ii) Pressure level at which stellar radiation is absorbed
- iii) how deep we probe into the atmosphere with optical wavelengths
Secondary eclipse depths directly measure the flux of the planet.

The mean effective temperature of the planet day-side depends on:

- i) incident stellar radiation
- ii) reflection by Rayleigh scattering or possible clouds
- iii) fraction of energy transported to the night-side.

Measured thermal emission depends on:

- i) Planet P-T profile
- ii) Pressure level at which stellar radiation is absorbed
- iii) how deep we probe into the atmosphere with optical wavelengths
- iv) emission by inversion layers
Secondary eclipse depths directly measure the flux of the planet.

The mean effective temperature of the planet day-side depends on:

- i) incident stellar radiation
- ii) reflection by Rayleigh scattering or possible clouds
- iii) fraction of energy transported to the night-side.

Measured thermal emission depends on:

- i) Planet P-T profile
- ii) Pressure level at which stellar radiation is absorbed
- iii) how deep we probe into the atmosphere with optical wavelengths
- iv) emission by inversion layers
- v) absorption by metal oxides (TiO, VO) and alkali metals (Na, K)
Secondary eclipse depths directly measure the flux of the planet.

The mean effective temperature of the planet day-side depends on:

- i) incident stellar radiation
- ii) reflection by Rayleigh scattering or possible clouds
- iii) fraction of energy transported to the night-side.

Measured thermal emission depends on:

- i) Planet P-T profile
- ii) Pressure level at which stellar radiation is absorbed
- iii) how deep we probe into the atmosphere with optical wavelengths
- iv) emission by inversion layers
- v) absorption by metal oxides (TiO, VO) and alkali metals (Na, K)

Expected levels of optical reflected light and optical thermal emission are closely linked.
Why Optical Secondary Eclipses?
There are:

~30 planets with secondary eclipse measurements, mostly observed with Spitzer (λ>3μm)
Why Optical Secondary Eclipses?

There are:

~30 planets with secondary eclipse measurements, mostly observed with Spitzer ($\lambda > 3 \mu m$)

But:

Most information on thermal structure of the atmosphere and the presence of absorbing species are short-wards of Spitzer, near the peak of the SED, where H_2O, CO_2, CH_4 and CO molecular bands are located.
Why Optical Secondary Eclipses?

Burrows et al. (2008) models showed an increase in planet-star flux ratio when Rayleigh scattering dominates the reflection spectrum.

Potentially observable planet-star flux ratios in the u'-band?
Why Optical Secondary Eclipses?
Why Optical Secondary Eclipses?

So far:

- ~10 secondary eclipses observed at optical wavelengths (but see Lopez-Morales & Coughlin poster 40.10 for Kepler secondary eclipse updates)
Why Optical Secondary Eclipses?

So far:

- \(~10\) secondary eclipses observed at optical wavelengths (but see Lopez-Morales & Coughlin poster 40.10 for Kepler secondary eclipse updates)
- Only 3 using ground-based telescopes in \(z'\) and SII filters (Sing & Lopez-Morales 2009, Lopez-Morales et al. 2010, Smith et al. 2011)
Why Optical Secondary Eclipses?

So far:

• ~10 secondary eclipses observed at optical wavelengths (but see Lopez-Morales & Coughlin poster 40.10 for Kepler secondary eclipse updates)

• Only 3 using ground-based telescopes in z′ and SII filters (Sing & Lopez-Morales 2009, Lopez-Morales et al. 2010, Smith et al. 2011)

• How do we get 10^8 photons (10^{-4} precision) across a range of filters from the ground?
Instrument: OSIRIS broad-band imaging CCD (7.8’x8.5’) on the 10.4m GTC
Instrument: OSIRIS broad-band imaging CCD (7.8’x8.5’) on the 10.4m GTC

Filters: Rayleigh scattering u' (λ3500 Å), Thermal tail r' (λ6300 Å), i' (λ7800 Å), and z' (λ9250 Å)
Instrument: OSIRIS broad-band imaging CCD (7.8’x8.5’) on the 10.4m GTC

Filters: Rayleigh scattering u' (λ3500 Å), Thermal tail r' (λ6300 Å), i' (λ7800 Å), and z' (λ9250 Å)

Targets: WASP-12b, CoRoT-1b, TrES-3b, WASP-3b and HAT-P-7b (expected depth > 0.01%, $P < 3$ days, $V < 13.6$)
Instrument: OSIRIS broad-band imaging CCD (7.8’x8.5’) on the 10.4m GTC

Filters: Rayleigh scattering u' (λ3500 Å), Thermal tail r' (λ6300 Å), i' (λ7800 Å), and z' (λ9250 Å)

Targets: WASP-12b, CoRoT-1b, TrES-3b, WASP-3b and HAT-P-7b (expected depth > 0.01%, P < 3 days, V < 13.6)

Dome restriction - can’t observe above 73 degrees elevation
Instrument: OSIRIS broad-band imaging CCD (7.8’x8.5’) on the 10.4m GTC

Filters: Rayleigh scattering u' (λ3500 Å), Thermal tail r' (λ6300 Å), i' (λ7800 Å), and z' (λ9250 Å)

Targets: WASP-12b, CoRoT-1b, TrES-3b, *HAT-P-23b* and *HAT-P-7b* (expected depth > 0.01%, $P < 3$ days, $V < 13.6$)

Dome restriction - can’t observe above 73 degrees elevation
Instrument: OSIRIS broad-band imaging CCD (7.8’x8.5’) on the 10.4m GTC

Filters: Rayleigh scattering \(u' (\lambda 3500 \text{ Å})\), Thermal tail \(r' (\lambda 6300 \text{ Å})\), \(i' (\lambda 7800 \text{ Å})\), and \(z' (\lambda 9250 \text{ Å})\)

Targets: WASP-12b, CoRoT-1b, TrES-3b, \textit{HAT-P-23b} and \textit{HAT-P-7b} (expected depth > 0.01%, \(P < 3 \text{ days}\), \(V < 13.6\))

Dome restriction - can’t observe above 73 degrees elevation

Technique: defocus bright targets, windowing readout mode, rapid cadence (5-14 sec in \(z'\), \(~60 \text{ sec in } u'\)), sufficient baseline for accurate depth measurement and decorrelation of systematics (90 hour large ESO program)
Preliminary Results

WARNING: these are preliminary results.
Preliminary Results

CoRoT-1b z′-band

WARNING: these are ~5x10^{-4} per 5 minutes
Preliminary Results

CoRoT-1b z'-band

$\sim 5 \times 10^{-4}$ per 5 minutes
Preliminary Results

CoRoT-1b z′-band

WARNING: these are Bright variable star in window - choose references carefully

~5x10^-4 per 5 minutes

Jayne Birkby, Leiden Observatory birkby@strw.leidenuniv.nl
• TrES-3 b and HAT-P-23 b in z’ and u’ both under analysis (very tentative current limit at 5×10^{-4} per 10 minutes in u’).
Current Status

• TrES-3 b and HAT-P-23 b in z’ and u’ both under analysis (very tentative current limit at 5×10^{-4} per 10 minutes in u’).

• Awaiting WASP-12 b observations.
• TrES-3 b and HAT-P-23 b in z’ and u’ both under analysis (very tentative current limit at 5×10^{-4} per 10 minutes in u’).

• Awaiting WASP-12 b observations.

• HAT-P-7 b seems too bright for our strategy.
• TrES-3 b and HAT-P-23 b in z’ and u’ both under analysis (very tentative current limit at 5×10^{-4} per 10 minutes in u’).

• Awaiting WASP-12 b observations.

• HAT-P-7 b seems too bright for our strategy.

• Additional K_s-band secondary eclipses with LIRIS on WHT from the GROUSE Project for TrES-3b (de Mooij & Snellen, 2009), CoRoT-1b and HAT-P-7b.
Ground-based optical secondary eclipses constrain thermal and reflective properties of exoplanet atmospheres.

With GTC OSIRIS we currently achieve 5×10^{-4} precision per 5 minutes in the z$'$-band.

Tentative confirmation of CoRoT-1b z$'$-band thermal emission.

HAT-P-23b, TrES-3b and WASP-12b under observation but HATP-7b too bright for our strategy.

Further analysis and understanding of systematics required!