Research Events
For the Public
Northwestern University

Weekly Astrophysics Seminars 2013-2014

Seminars are held at 4:00 PM on Tuesdays in Room F160
on the first floor of the Technological Institute (2145 Sheridan Road) unless otherwise noted


Fall Quarter 2014

  Date      Speaker / Seminar Host
  Sept. 23

Mike McCourt
   UC Berkeley
    Do Galaxy Clusters Boil?

The hot plasma filling galaxy clusters is susceptible to a convective MHD instability known as the MTI. Understanding the implications of this convection has been surprisingly difficult, however; it depends on both the large-scale evolution of the cluster and on the plasma physics of the gas. I will describe a new set of "semi-cosmological" simulations which capture enough of the cosmic evolution of galaxy clusters to reproduce their large-scale properties but still provide an idealized environment in which to study cluster convection and its implications. I will also describe some future applications of these simulations to other problems in galaxy formation.

Claude-André Faucher-Giguère

  Sept. 30

Francesca Valsecchi
   Northwestern University
    Investigating the Role of Stellar Tides in Hot Jupiters’ Origin and Fate

Two formation models have been proposed to explain hot Jupiters’ tight orbits. These could have migrated inward in a disk (disk migration), or they could have formed via tidal circularization of an orbit made highly eccentric following gravitational interactions with a companion (high-eccentricity migration). Disk migration drives hot Jupiters down to their Roche limit separations a_R, in orbits where the stellar spin and orbital angular momentum vectors are nearly aligned. High-eccentricity migration results in an inner cutoff at 2a_R and in a broad range of misalignments. Using state-of-the-art stellar models and a detailed treatment of tidal dissipation, we show that currently observed systems are consistent with high-eccentricity migration. In this scenario, stellar tides shaped the observed distribution of misalignments, and brought inward from beyond 2a_R the currently known hot Jupiters that lie within 2a_R. Interestingly, this population potentially provides direct empirical constraints on tidal dissipation theories.
Eventually, stellar tides will cause the orbits of many hot Jupiters to decay down to a_R. Using a standard binary mass transfer model we show how a hot Jupiter undergoing a phase of Roche-lobe overflow (RLO) leads to a hot super-Earth in an orbit of few hours to several days. This model predicts planets with intermediate masses (``hot Neptunes'') that should be found in the process of losing mass through RLO. The observed excess of small single-planet candidate systems observed by Kepler may also be the result of this process. If so, the number of systems that produced hot Jupiters could be 2-3 times larger than one would infer from contemporary observations.


  Oct. 7

Andrew MacFadyen
   New York University

Shane Larson

  Oct. 14

Ryan Foley
    University of Illinois at Urbana-Champaign

Vicky Kalogera

  Oct. 21

Rachel Friesen
   Dunlap Institute, University of Toronto

Laura Fissel

  Nov. 4

Gwen Rudie
   The Carnegie Observatories

Claude-André Faucher-Giguère

  Nov. 11

Saul Rappaport

Fred Rasio and Francesca Valsecchi

  Nov. 25

Edwin Bergin
   University of Michigan

Farhad Zadeh

For more information, contact: Janet Howe (janet.howe@northwestern.edu)

Past Astrophysics Seminars