New study is first to determine how much stars should innately twinkle
Many people know that stars appear to twinkle because our atmosphere bends starlight as it travels to Earth. But stars also have an innate “twinkle” — caused by rippling waves of gas on their surfaces — that is imperceptible to current Earth-bound telescopes.
In a new study, a Northwestern University-led team of researchers developed the first 3D simulations of energy rippling from a massive star’s core to its outer surface. Using these new models, the researchers determined, for the first time, how much stars should innately twinkle.
And, in yet another first, the team also converted these rippling waves of gas into sound waves, enabling listeners to hear both what the insides of stars and the “twinkling” should sound like. And it is eerily fascinating.
The study was published today (July 27), in the journal Nature Astronomy.
“Motions in the cores of stars launch waves like those on the ocean,” said Northwestern’s Evan Anders, who led the study. “When the waves arrive at the star’s surface, they make it twinkle in a way that astronomers may be able to observe. For the first time, we have developed computer models which allow us to determine how much a star should twinkle as a result of these waves. This work allows future space telescopes to probe the central regions where stars forge the elements we depend upon to live and breathe.”
Anders is a postdoctoral fellow in Northwestern’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA). He is advised by study coauthor Daniel Lecoanet, an assistant professor of engineering sciences and applied mathematics in Northwestern’s McCormick School of Engineering and member of CIERA.
Continue to the full Northwestern News story.