Skip to main content

Explosive neutron star merger captured for first time in millimeter light

Flash is one of the most energetic short-duration gamma-ray bursts ever observed

For the first time, scientists have recorded millimeter-wavelength light from a fiery explosion caused by the merger of a neutron star with another star.

Led by Northwestern University and Radboud University in the Netherlands, the team also confirmed this flash as one of the most energetic short-duration gamma-ray bursts (GRBs) ever observed, leaving behind one of the most luminous afterglows on record.

Astrophysicists made the discovery with the Atacama Large Millimeter/submillimeter Array (ALMA), an international observatory operated by the National Science Foundation’s National Radio Astronomy Observatory (NRAO). Located in the high-altitude Atacama Desert in Chile, the ALMA array comprises 66 radio telescopes, making it the largest radio telescope in the world.

“This short gamma-ray burst was the first time we tried to observe such an event with ALMA,” said Northwestern’s Wen-fai Fong, principal investigator of the ALMA program. “Afterglows for short bursts are very difficult to come by, so it was spectacular to catch this event shining so brightly. After many years observing these bursts, this surprising discovery opens up a new area of study, as it motivates us to observe many more of these with ALMA and other telescope arrays in the future.”

The research will be published in an upcoming edition of the Astrophysical Journal Letters.

Fong is an assistant professor of physics and astronomy at Northwestern’s Weinberg College of Arts and Sciences and key member of the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA). Northwestern coauthors include Alicia Rouco Escorial, Genevieve Schroeder, Jillian Rastinejad, Charles Kilpatrick, Kate Alexander, and Anya Nugent.

Continue to the full Northwestern News story.

Learn More

Top Image Credit: ALMA (ESO/NAOJ/NRAO), M. Weiss (NRAO/AUI/NSF)